Specific Phobias

Operational Definition
A. Marked fear or anxiety about a specific object or situation
B. The phobic object or situation consistently provokes fear or anxiety.
C. The phobic object or situation is actively avoided or endured with intense fear or anxiety.
D. The fear or anxiety is out of proportion to the actual danger posed by the specific object or situation.

Operational Definition
E. The duration is at least 6 months.
F. The fear, anxiety or avoidance cause clinically significant distress or impairment
G. The fear, anxiety and avoidance associated with the specific object or situation are not restricted to the symptoms of disorder
Types of SP

- *Animal type* (e.g., spiders, insects, dogs)
- *Natural environment type* (e.g., heights, storms, water)
- *Blood-injection-injury type* (e.g., needles, invasive medical procedures, dental phobia)
- *Situational type* (e.g., flying, driving, bridges, tunnels, enclosed places)
- *Other type* (e.g., situations that may lead to choking or vomiting; in children, loud sounds or costumed characters)

Structure of SP

- Some research shows three primary clusters:
 1. Animal phobia
 2. B-I-I
 3. Combined situational/natural environment
- Others show just two: B-I-I and all others
- Some would rather classify based on elicited emotion: fear or disgust

Phobia Prevalence

- Animal phobia – 3.3-7%
- Natural environment – 8.9-11.6%
- B-I-I – 3-4.5%
- Situational – 5.2-8.4%

LeBeau et al. (2010)
Phobias in College Students

% reporting significant or severe fears

- Spiders: 34%
- Public Speaking: 31%
- Snakes: 22%
- Heights: 18%
- Receiving Injections: 16%
- Rats: 15%
- Tight, Enclosed Spaces: 14%
- Insects: 11%
- Invasive Memories: 10%
- Seeing Blood: 8%
- Meeting New People: 5%
- Walking through Crowds: 2%

Seim & Spates (2010)

Phobias in College Students

% of significant and severe interested in treatment

- Public Speaking: 20%
- Snakes: 17%
- Heights: 19%
- Rats: 12%
- Tight, Enclosed Spaces: 25%
- Receiving Injections: 19%
- Invasive Memories: 24%
- Rats: 15%
- Seeing Blood: 21%
- Meeting New People: 38%
- Insects: 12%
- Crowds: 20%

Seim & Spates (2010)

Phobia Onsets

- Animal phobia – 6.3-9.2 years
- Natural environment – 6.5-13.6 years
- B-I-I – 5.5-9.4 years
- Situational – 13.4-21.8 years

LeBeau et al. (2010)
Gender Differences

• 21.2-26.5% of women and 10.9-12.4% of men met criteria for a SP

• Animal, situational, and storm/water overwhelmingly female

• Heights (60% female) and B-I-I (35-65% female) more evenly distributed

Gamble et al. (2010); LeBeau et al. (2010)

SES & Cultural Differences

• Appear to be few differences in type prevalence across SES, family structure, or age

• Some research on cultural differences
 – Af-Am endorse SP at three times white rates
 – Af-Am endorse more animal phobias, less B-I-I phobias than whites
 – Asian and Hispanics show lower rates than whites

Chapman et al. (2008); Ollendick et al. (2010)

Comorbidity

• Over 75% experience multiple phobias, with over 50% having three or more

• Significant overlap with depression in animal and height phobias

• Other anxiety disorders also very common, across the subtypes

LeBeau et al. (2010); Ollendick et al. (2010)
Impact of Specific Phobia

- Lowered overall QoL in adults and youth
- Functional impairment in education and employment in adults
- More work loss days, poorer physical quality of life, and poorer mental QoL in adults

Focus of Fear

- Natural environment and situational show more concern with danger of harm
- Animal phobia show disgust and revulsion
- B-I-I show internal feelings and physical symptoms

Etiology

- Two possible frameworks
 1. Associative
 - Direct conditioning, vicarious conditioning, modeling
 2. Nonassociative means
 - Preparedness, innate fears
- May also be an interaction between the two
Associative Fears

• Developed from animal models of fear, began as classical conditioning models

• Mowrer’s two-factor theory of avoidance learning was and is highly influential
 – Fears develop initially via CC, then are maintained via negative reinforcement (avoidance)

Coelho & Purkis (2009)

Associative Fears

• Vicarious conditioning can also play an important role

• Modeling, information transmission, and visual observation of fear

• May be partially mediated by preparedness

Coelho & Purkis (2009)

Evolutionary Preparedness

• We may be genetically primed to fear certain stimuli, thanks to our evolutionary history
 – Snakes and reptiles
 – Spiders
 – Dark, heights, closed spaces

• Helps to explain why more recent dangerous things are not feared as often

Ohman & Mineka (2003)
Evolutionary Preparedness

- We slowly acquire the competencies needed to deal with both fear predispositions and actual fears.
- Phobias are those resistant to extinction or habituation and those acquired through associative processes.
- Environment can work toward eliminating biologically relevant fears.
- Same vicariant and informational processes that are at work in building fears can extinguish them.

Rachman (2002)

Nonassociative Theories

- Tries to overcome critiques of EvoPrep.
 1. Each species has certain fears that are part of their development.
 2. These might occur in individuals even without direct or indirect experience stimulus.
 3. Majority of members show fear to a set of relevant stimuli from the first encounter.
 4. This immediate fear response favored survival, compared with acquiring the fear from experience.

Coulho & Purvis (2009)
Nonassociative Theories

- Non EvoPrep fears (e.g. dentists, cars) must be associatively learned

- There are some problems w/ NA
 - Mediators/moderators of fear are ignored
 - Methodological problems in studies
 - No genetic contribution seen to SP

Coulho & Purvis (2009)

Fear Module Theory

- Posits an evolutionary created system to solve adaptive problems provoked by life-threatening situations in ancestors’ ecology

- Argues that cognitive and contingency learning developed later in evolution

- Amygdala vs hippocampal functioning

Ohman & Mineka (2001)

Cognitive Models

- Emphasizes the role of interpretation and attribution in development and maintenance of phobias

- Emotional responses, however, tend to occur before cognitions

- Can be useful in explaining some dysfunctions
Cognitive Dysfunctions

- High danger expectancies
- Elevated certainty that the events they feared would “really” occur
- Low expectancies for dealing with the phobic situations or events if they occurred

Ollendick et al. (2010)

Etiology Conclusions

- May be more continuum-based, not categorical
- It’s not whether a given fear is associative but instead how much learning is needed to evoke that particular fear
- Interconnectedness and parallel processing in the brain mean separating emotion from cognition is highly problematic

Specific Phobia Treatment

- Gold-standard treatment for phobias is exposure with response prevention
- Specifically, Öst’s “One Session Treatment” protocol has been shown to work very well
- Two phases: assessment and treatment

Davis et al. (2009)
OST Assessment Phase

• Diagnostic assessment using an evidence-based, multi-method and informant approach
 – ADIS-IV, self-report, and behavioral avoidance tasks

• Functional assessment follows to
 – Determine any maintaining variables
 – Generate a fear hierarchy
 – Catalog most severe catastrophic cognitions
 – Determine the onset and course of the phobia if possible
 – Build rapport and present the rationale for treatment

OST Treatment Phase

• Clinician makes use of exposures plus cognitive challenges, modeling, reinforcement, education, and skills training

• Exposures are seen as a series of negotiated behavioral experiments based on fear hierarchy

• “Foot in the door” and “door in the face” useful

OST Treatment Phase

• Generally lasts 3 or so hours (massed exposure), followed by self/parent guided exposures as homework
 – Allows for overlearning to occur

• Must show at least a 50% decrease in SUDs (or comparable clinician rating)
How not to do an Exposure

• First off, don’t be Maury Povich

• What else was wrong with this exposure?

Medications for SP

• OST is gold-standard, meds alone are not effective for treatment

• Orally administered cortisol before exposure has enhanced treatment outcomes
 – Both post-treatment and follow-up

• Unstudied outside of lab, needs replication

d'Quervain et al. (2011)

Media Critique #1